4,055 research outputs found

    Hadron Spin Dynamics

    Get PDF
    Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many challenges to theory, including measurements at HERMES and SMC of the single spin asymmetries in pion electroproduction, where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability distributions. I illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understanding the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly the double transverse spin asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin

    Light-Front QCD in Light-Cone Gauge

    Get PDF
    The light-front (LF) quantization of QCD in light-cone (l.c.) gauge is discussed. The Dirac method is employed to construct the LF Hamiltonian and theory quantized canonically. The Dyson-Wick perturbation theory expansion based on LF-time ordering is constructed. The framework incorporates in it simultaneously the Lorentz gauge condition as an operator equation as well. The propagator of the dynamical ψ+\psi_+ part of the free fermionic propagator is shown to be causal while the gauge field propagator is found to be transverse. The interaction Hamiltonian is re-expressed in the form closely resembling the one in covariant theory, except for additional instantaneous interactions, which can be treated systematically. Some explicit computations in QCD are given.Comment: Presented at VII Hadron Physics 2000, Caraguatatuba, Sao Paulo, Brazil, 10-15 April 200

    Illuminating the 1/x moment of parton distribution functions

    Get PDF
    The Weisberger relation, an exact statement of the parton model, elegantly relates a high-energy physics observable, the 1/x moment of parton distribution functions, to a nonperturbative low-energy observable: the dependence of the nucleon mass on the value of the quark mass or its corresponding quark condensate. We show that contemporary fits to nucleon structure functions fail to determine this 1/x moment; however, deeply virtual Compton scattering can be described in terms of a novel F_{1/x}(t) form factor which illuminates this physics. An analysis of exclusive photon-induced processes in terms of the parton-nucleon scattering amplitude with Regge behavior reveals a failure of the high Q^2 factorization of exclusive processes at low t in terms of the Generalized Parton-Distribution Functions which has been widely believed to hold in the past. We emphasize the need for more data for the DVCS process at large t in future or upgraded facilities.Comment: 11 pages, 3 figures, invited contribution to the 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, sept. 10th-14th 2007, Juelich, German

    Light-Front-Quantized QCD in Covariant Gauge

    Get PDF
    The light-front (LF) canonical quantization of quantum chromodynamics in covariant gauge is discussed. The Dirac procedure is used to eliminate the constraints in the gauge-fixed front form theory quantum action and to construct the LF Hamiltonian formulation. The physical degrees of freedom emerge naturally. The propagator of the dynamical ψ+\psi_+ part of the free fermionic propagator in the LF quantized field theory is shown to be causal and not to contain instantaneous terms. Since the relevant propagators in the covariant gauge formulation are causal, rotational invariance---including the Coulomb potential in the static limit---can be recovered, avoiding the difficulties encountered in light-cone gauge. The Wick rotation may also be performed allowing the conversion of momentum space integrals into Euclidean space forms. Some explicit computations are done in quantum electrodynamics to illustrate the equivalence of front form theory with the conventional covariant formulation. LF quantization thus provides a consistent formulation of gauge theory, despite the fact that the hyperplanes x±=0x^{\pm}=0 used to impose boundary conditions constitute characteristic surfaces of a hyperbolic partial differential equation.Comment: LaTex, 16 page

    Light-cone QCD predictions for elastic ed-scattering in the intermediate energy region

    Get PDF
    The contributions of helicity-flip matrix elements to the deuteron form factors are discussed in the light-cone frame. Normalized A(Q2)A(Q^2), B(Q2)B(Q^2), GQ(Q2)G_Q(Q^2) and T20T_{20} are obtained in a simple QCD-inspired model. We find that G++G_{+-}^+ plays an important role in GQ(Q2)G_Q(Q^2). Our numerical results are consistent with the data in the intermediate energy region.Comment: 9 pages, REVTeX file, 5 figure

    The running coupling method with next-to-leading order accuracy and pion, kaon elm form factors

    Full text link
    The pion and kaon electromagnetic form factors FM(Q2)F_M(Q^2) are calculated at the leading order of pQCD using the running coupling constant method. In calculations the leading and next-to-leading order terms in αS((1x)(1y)Q2)\alpha_S((1-x)(1-y)Q^2) expansion in terms of αS(Q2)\alpha_S(Q^2) are taken into account. The resummed expression for FM(Q2)F_M(Q^2) is found. Results of numerical calculations for the pion (asymptotic distribution amplitude) are presented.Comment: 9 pages, 1 figur

    The hbar Expansion in Quantum Field Theory

    Full text link
    We show how expansions in powers of Planck's constant hbar = h/2\pi can give new insights into perturbative and nonperturbative properties of quantum field theories. Since hbar is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the hbar expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of hbar. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of hbar, then each loop in perturbation theory brings a factor of hbar. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in hbar. The connection between the number of loops and factors of hbar is more subtle for bound states since the binding energies and bound-state momenta themselves scale with hbar. The hbar expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in hbar and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.Comment: 8 pages, 1 figure. Version to be published in Phys. Rev.

    Hadron Optics in Three-Dimensional Invariant Coordinate Space from Deeply Virtual Compton Scattering

    Get PDF
    The Fourier transform of the deeply virtual Compton scattering amplitude (DVCS) with respect to the skewness parameter \zeta= Q^2/ 2 p.q can be used to provide an image of the target hadron in the boost-invariant variable \sigma, the coordinate conjugate to light-front time \tau=t+ z/ c. As an illustration, we construct a consistent covariant model of the DVCS amplitude and its associated generalized parton distributions using the quantum fluctuations of a fermion state at one loop in QED, thus providing a representation of the light-front wavefunctions of a lepton in \sigma space. A consistent model for hadronic amplitudes can then be obtained by differentiating the light-front wavefunctions with respect to the bound-state mass. The resulting DVCS helicity amplitudes are evaluated as a function of \sigma and the impact parameter \vec b_\perp, thus providing a light-front image of the target hadron in a frame-independent three-dimensional light-front coordinate space. Models for the LFWFs of hadrons in (3+1) dimensions displaying confinement at large distances and conformal symmetry at short distances have been obtained using the AdS/CFT method. We also compute the LFWFs in this model in invariant three dimensional coordinate space. We find that in the models studied, the Fourier transform of the DVCS amplitudes exhibit diffraction patterns. The results are analogous to the diffractive scattering of a wave in optics where the distribution in \sigma measures the physical size of the scattering center in a one-dimensional system.Comment: minor modification to text, preprint number update

    Polarization as a Probe to the Production Mechanisms of Charmonium in πN\pi N Collisions

    Get PDF
    Measurements of the polarization of \jp produced in pion-nucleus collisions are in disagreement with leading twist QCD prediction where \jp is observed to have negligible polarization whereas theory predicts substantial polarization. We argue that this discrepancy cannot be due to poorly known structure functions nor the relative production rates of \jp and χJ\chi_J. The disagreement between theory and experiment suggests important higher twist corrections, as has earlier been surmised from the anomalous non-factorized nuclear AA-dependence of the \jp cross section.Comment: 8 page
    corecore